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from this study suggest that cuttlebone δ13C and δ18O hold 
promise as natural tags for determining the degree of spa-
tial connectivity between nearshore and offshore environ-
ments used by cuttlefish.

Introduction

Marine organisms often utilize both nearshore and offshore 
environments to complete their life cycle (Gillanders et al. 
2003), and determining the degree of spatial connectivity 
among life stages is important to our understanding of pop-
ulation dynamics (Cowen et al. 2000; Beck et al. 2001). In 
response, a variety of natural tags (e.g., trace elements, sta-
ble isotopes) have been used to assess movement between 
nearshore and offshore environments (Gillanders 2005) and 
determine the origin of individuals from different nurser-
ies (Thorrold et  al. 2001; Rooker et  al. 2010). Despite 
the increasing application of chemical tags in otoliths for 
assessing movement and habitat use in marine fishes (Els-
don et al. 2008), significant life-history gaps exist for many 
other marine organisms with carbonate structures (e.g., 
coleoid cephalopod statoliths, stylets, and cuttlebones) that 
may be suitable for assessing similar questions regarding 
nearshore–offshore habitat shifts (Semmens et  al. 2007; 
Zumholz et al. 2007; Pecl et al. 2011).

Cuttlefishes (family Sepiidae) are important compo-
nents of marine food webs throughout their geographic 
range, which includes coastal waters in several regions of 
the world (Piatkowski et al. 2001; Neige 2003). Although 
cuttlefish are ecologically and economically important, 
relatively little is known about their movement and habi-
tat use, particularly during the early life period (Reid et al. 
2005; Semmens et al. 2007). Sepiids are characterized by 
the presence of an aragonitic internal shell, the cuttlebone 
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(Reid et  al. 2005), and similar to other biogenic carbon-
ates, these structures accrete material in a predictable man-
ner and location of the septa (chambers) is associated with 
specific periods in the life of a cuttlefish (Ré and Narciso 
1994; Bettencourt and Guerra 2001). Stable isotopic ratios 
of carbon and oxygen in cuttlebones are reflective of ambi-
ent seawater ratios (Bettencourt and Guerra 1999), suggest-
ing that cuttlebones may be useful structures for identifying 
ontogenetic shifts that occur between chemically distinct 
water masses.

Here, we report on the use of δ13C and δ18O in the cut-
tlebones of three species of Mediterranean cuttlefish (Sepia   
elegans, S. officinalis, and S. orbignyana) with different life 
histories. While all three species hatch as benthic juveniles 
(no planktonic stage), the life history of S. officinalis dif-
fers from S. elegans and S. orbignyana as it is more com-
mon on the inner shelf and makes seasonal migrations to 
spawn in nearshore waters (Guerra 2006). Still, there is a 
lack of empirical research on S. officinalis movement in 
Mediterranean waters and little to no information regarding  
movement patterns and habitat use of S. elegans and S. 
orbignyana, which are thought to prefer deeper waters near 
the shelf edge (Belcari 1999). The purpose of this study 
was to compare cuttlebone δ13C and δ18O among the three 
species of cuttlefish and investigate whether δ13C and δ18O 
can be used to delineate movement and habitat shifts of 
cuttlefish.

Materials and methods

Subadult cuttlefish specimens were collected in the south-
western Adriatic Sea off Mola di Bari, Italy, in October 
2010 (Fig. 1). Twenty-eight cuttlefish specimens, comprised 
of three species (S. elegans = 6, S. officinalis = 10, and S. 
orbignyana = 12), were collected from commercial trawlers 
at depths ranging from 50 to 300 m. Depth of capture varied 
among species and was approximated by the fishermen: S. 
elegans (~100–250 m), S. officinalis (<75 m), and S. orbig-
nyana (~100–300  m). Upon collection, mantle length was 
recorded to the nearest 0.1 cm for each specimen, and the 
cuttlebone was extracted, cleaned with distilled water, and 
measured in length to the nearest 0.1 cm (Table 1).

Cuttlebone material was isolated using an approach 
modified from Bettencourt and Guerra (1999), in which 
the cuttlebone was separated into segments from poste-
rior to anterior, with each segment representing progres-
sive life stages. In the current study, two 1-cm sections 
were isolated from each cuttlebone to examine different 
life stages, one at the ‘core’ (posterior origin) represent-
ing deposition during early life or nursery period and one 
at the ‘edge’ (anterior margin) representing recent depo-
sition (Fig.  2). For both core and edge sections, material 

was carefully removed from the surface of the cuttlebone 
downward until the hypostracum was reached. Material 
was isolated from each cuttlebone with a scalpel and then 
powdered with a mortar and pestle. A significant portion 
of material was missing from a single S. officinalis (core 
section) and two S. orbignyana cuttlebones (edge sections); 
thus, these sections were excluded from analyses. Cuttle-
bone δ13C and δ18O were quantified on an automated car-
bonate preparation device coupled to an isotopic ratio mass 

Fig. 1   Map showing location (Mola di Bari, Italy) on the southwest-
ern Adriatic coast where cuttlefish specimens (S. elegans, S. offici-
nalis, and S. orbignyana) were collected

Table 1   Collection information for three species of cuttlefish (S. ele-
gans, S. officinalis, and S. orbignyana) collected from the southern 
Adriatic Sea

Mean ± SD mantle length (ML), mean ± SD cuttlebone length (CL), 
and depth range of collected specimens are given for each species

Species N ML ± SD (cm) CL ± SD (cm) Depth (m)

Sepia elegans 6 4.32 ± 0.98 4.18 ± 0.99 100–220

Sepia officinalis 10 7.52 ± 0.59 7.31 ± 0.53 50–70

Sepia orbignyana 12 5.31 ± 1.76 4.99 ± 1.73 120–280

Fig. 2   Schematic diagram of a cuttlebone  (based on  S.  officinalis). 
Dashed lines represent 1-cm sections corresponding to the core and 
edge sampled for stable isotopic analysis
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spectrometer maintained at the Environmental Isotope Lab-
oratory, Department of Geosciences, University of Arizona. 
The isotopic ratio measurements were calibrated based on 
repeated measurements of National Bureau of Standards 
(NBS), NBS-19 and NBS-18, and precision was ±0.11 ‰ 
(standard deviation, SD) for δ18O and ±0.08  ‰ (SD) for 
δ13C (Wells et al. 2012). Cuttlebone δ13C and δ18O reported 
here are based on isotopic ratios of 13/12C and 18/16O relative 
to the Pee Dee belemnite (PDB) scale after comparison to 
an in-house standard calibrated to PDB.

Multivariate analysis of variance (MANOVA) was 
used to test for species-specific differences in cuttlebone 
δ13C and δ18O at two life stages: (1) early life (core) and 
(2) recent (edge). Pillai’s trace was chosen as the test sta-
tistic as it is most robust to violations of homogeneity of 
covariance (Wilkinson et  al. 1996). Analysis of variance 
(ANOVA) tests were also performed to test for species-
specific differences in cuttlebone δ13C and δ18O, and Tuk-
ey’s honestly significant difference (HSD) test was used 
to make pairwise comparisons among species at each life 
stage. Ontogenetic differences in cuttlebone δ13C and δ18O 
were examined as the mean difference between core and 
edge pairs using paired t tests. Quadratic discriminant func-
tion analysis (QDFA) was used to classify cuttlebone δ13C 
and δ18O at each life stage. Significance for all tests was 
based on an alpha value of 0.05.

Results

Cuttlebone δ13Ccore and δ18Ocore (early life deposition) 
varied significantly among the three species (MANOVA, 
P  <  0.01), and univariate contrasts indicated that both 
δ13Ccore and δ18Ocore differed among the three species 
examined (ANOVA, P  <  0.01). Cuttlebone δ18Ocore val-
ues (mean value  ±  SD) for S. officinalis (0.1  ±  0.2  ‰) 
were significantly lower than values observed for S. ele-
gans (3.1 ± 0.2 ‰) and S. orbignyana (3.1 ± 0.2 ‰) by 

approximately 3 ‰ (Tukey’s HSD, P < 0.01; Fig. 3). Cut-
tlebone δ13Ccore values of S. orbignyana (−1.8 ±  0.5  ‰) 
were significantly higher than those observed for S. elegans 
(−2.6 ± 0.4 ‰) and S. officinalis (−4.0 ± 0.6 ‰), while 
δ13Ccore values of S. elegans were high relative to S. offici-
nalis (Tukey’s HSD, P < 0.01; Fig. 3). Overall cross-vali-
dated classification success from QDFA based on δ13Ccore 
and δ18Ocore was 89  %, and classification success was 
higher for S. officinalis (100 %) than for S. elegans (83 %) 
or S. orbignyana (83 %).

Cuttlebone δ13Cedge and δ18Oedge (recent deposition) 
were also distinct among the three species (MANOVA, 
P  <  0.01), and a species-specific effect was detected 
for both δ13C and δ18O (ANOVA, P  <  0.01). Cuttlebone 
δ18Oedge values of S. officinalis (1.6  ±  0.3  ‰) were sig-
nificantly higher relative to values observed for S. elegans 
(3.0 ± 0.4 ‰) and S. orbignyana (3.0 ± 0.1 ‰) (Tukey’s 
HSD, P  <  0.01), but no differences were found between 
the latter two species (Tukey’s HSD, P > 0.05). Similarly, 
cuttlebone δ13Cedge values of S. officinalis (−1.6 ± 0.5 ‰) 
were significantly lower (1  ‰ or more) relative to the 
two other species (Tukey’s HSD, P  <  0.05). Cuttlebone 
δ13C edge of S. orbignyana (−0.2 ± 0.5 ‰) and S. elegans 
(−0.5  ±  1.6  ‰) was similar (Tukey’s HSD, P  >  0.05). 
Overall cross-validated classification success from QDFA 
based on δ13Cedge and δ18Oedge was 88 %, and classification 
success by species for recent deposition was again 100 % 
for S. officinalis, with values being lower for both S. orbig-
nyana (90 %) and S. elegans (67 %).

Differences in cuttlebone δ13C and/or δ18O were 
detected between core and edge samples of all three spe-
cies, with the cuttlebone δ13Cedge values higher than 
δ13Ccore for all three species (paired t test, P < 0.01; Fig. 4). 
Differences between cuttlebone δ13Ccore and δ13Cedge val-
ues were greater (mean difference ± SD) for S. officinalis 
(2.5  ±  0.4  ‰) than for either S. elegans (2.2  ±  1.3  ‰) 
or S. orbignyana (1.5  ±  0.8  ‰). Variation in cuttlebone 
δ18O between core and edge samples was also detected for  

Fig. 3   Cuttlebone δ13C and 
δ18O (‰ relative to Pee Dee 
belemnite) for core and edge 
samples of three species of cut-
tlefish: S. elegans, S. officinalis, 
and S. orbignyana. Confidence 
ellipses (1 SD around the mean) 
are shown for each species
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S. officinalis and S. orbignyana (paired t test, P  <  0.01), 
with δ18Oedge values of S. officinalis significantly higher 
than δ18Ocore values (mean difference  =  1.4  ±  0.4  ‰), 
while the opposite trend (−0.2 ± 0.1 ‰) was observed for 
S. orbignyana (Fig.  4). No significant difference in δ18O 
between core and edge material was detected for S. elegans 
(paired t test, P > 0.05).

Discussion

Few studies have examined the use of cuttlebone δ13C 
and δ18O as natural tags for cuttlefish, preventing direct 
comparisons with other studies in the Mediterranean Sea; 
however, isotopic values from this study were comparable 
to cuttlebone δ13C and δ18O values reported in adjacent 
waters. In the present study, δ18O values were much lower 
in S. officinalis (range 0.3–1.9 ‰) than in S. elegans (2.7–
3.8 ‰) and S. orbignyana (2.8–3.5 ‰). Similarly, δ13C val-
ues from S. officinalis cuttlebones (range −4.8 to −0.9 ‰) 
were consistently lower than those from either S. elegans 
(−3.3 to 0 ‰) or S. orbignyana (−2.5 to 0 ‰). Because 
this is the first isotopic analysis of cuttlebones for S. ele-
gans and S. orbignyana, regional comparisons were limited 
to S. officinalis. Cuttlebone δ18O values for S. officinalis 
collected off the northwestern Iberian Peninsula (range 
−0.2 to 2.1  ‰) by Bettencourt and Guerra (1999) were 
relatively similar to our findings, while a life-history tran-
sect of δ18O (from core to edge of cuttlebone) of a single  
S. officinalis from the North Sea ranged from −1.3 to 
3.0  ‰ (Rexfort and Mutterlose 2006). For δ13C, cuttle-
bone values from the North Sea (Rexfort and Mutterlose 
2006) and this study both generally fell within a range of 
−4.5 to −1.0 ‰, while values from the Iberian Peninsula 
(Bettencourt and Guerra 1999) were slightly higher (range 
−3.0 to 1.0 ‰). Observed regional variation in the isotopic 
composition of S. officinalis cuttlebones between the cur-
rent study and previous studies from outside the Mediter-
ranean is likely reflective of regional differences in δ13C 

and δ18O values of seawater or prey (DeLaygue et al. 2000; 
LeGrande and Schmidt 2006; Graham et al. 2010).

Cuttlebone δ13Ccore and δ18Ocore values for S. officinalis 
were lower than values observed for both S. elegans and  
S. orbignyana, and distinct differences between S. offici-
nalis and the two other species appear linked to their early 
life habitat. S. officinalis spawn primarily in nearshore 
waters and juveniles of this species inhabit coastal lagoons 
and bays (Blanc et  al. 1998; Reid et  al. 2005; Guerra 
2006), while spawning and nursery areas of S. elegans and 
S. orbignyana are thought to occur farther offshore (Reid 
et  al. 2005). In this region of the Adriatic Sea, nearshore 
and offshore water masses differ physicochemically, with 
nearshore water often characterized by higher tempera-
ture and lower salinity (Bignami et  al. 2007; Turchetto 
et al. 2007; Marini et al. 2008). Given that δ13C and δ18O 
values of both seawater and biogenic carbonates are typi-
cally more depleted in the heavier isotope as temperature 
increases (Bettencourt and Guerra 1999; LeGrande and 
Schmidt 2006) and/or salinity decreases (Delaygue et  al. 
2000; Rooker et  al. 2010), cuttlefish inhabiting nearshore 
nurseries would be expected to have lower cuttlebone 
δ13Ccore and δ18Ocore values. Moreover, observed differ-
ences in cuttlebone δ13Ccore values between S. officinalis 
and the other two species (1–2  ‰ lower in S. officinalis) 
from this study are consistent with previously documented 
differences in benthic foraminifera δ13C values between 
nearshore and offshore areas (1–2  ‰ lower in nearshore 
samples) in the southern Adriatic Sea (Grauel and Bernas-
coni 2010). Our finding of lower cuttlebone δ13Ccore and 
δ18Ocore values for S. officinalis relative to both S. elegans 
and S. orbignyana is in accord with the basic concept that 
this species occupies nearshore nurseries. Conversely, 
higher cuttlebone δ13Ccore and δ18Ocore values observed for 
S. elegans and S. orbignyana suggest that these species 
likely inhabit offshore nurseries that are minimally influ-
enced by coastal processes (i.e., freshwater inflow).

Cuttlebone δ13Cedge and δ18Oedge were representative 
of recent deposition, and differences between core and 

Fig. 4   Comparisons of core 
and edge mean cuttlebone δ13C 
and δ18O (‰ relative to Pee Dee 
belemnite) for each of three 
species of cuttlefish: S. elegans, 
S. officinalis, and S. orbignyana. 
Error bars are ±1 standard 
error of the mean
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edge samples were used to investigate ontogenetic shifts 
in habitat. Both δ13Cedge and δ18Oedge in the cuttlebones of  
S. officinalis were high relative to the respective core 
values for each isotope. Changes in cuttlebone compo-
sition over time might be expected for S. officinalis as it 
is widely thought to make cross-shelf migrations from 
coastal nurseries in autumn (August to October) to over-
winter in deeper water offshore (Blanc et  al. 1998; Reid 
et  al. 2005; Guerra 2006). Given the aforementioned 
nearshore–offshore gradient in temperature and salin-
ity (Grauel and Bernasconi 2010), we would expect an 
increase in both δ13C and δ18O from the cuttlebone core 
to edge as S. officinalis move from nearshore nurseries to 
offshore overwintering areas. Because S. officinalis speci-
mens used in our study were captured in offshore waters, it 
appears that the observed difference between the core and 
edge is largely due to changes in physicochemical condi-
tions between the two areas; though, other sources cannot 
be completely excluded (Hoie et al. 2004). Higher δ13Cedge 
relative to δ13Ccore was also observed in cuttlebones of S. 
elegans and S. orbignyana; however, it appears unlikely 
that these differences were due to ontogenetic movement 
because similar shifts were not observed for δ18O, which is 
deposited independent of metabolic and kinetic effects in 
biogenic carbonates and therefore considered a more reli-
able indicator of physicochemical water mass properties 
(Bettencourt and Guerra 1999; Hoie et al. 2003). Increases 
in cuttlebone δ13C from core to edge for cuttlefish reared 
in the laboratory suggest that enrichment of the heavier 
carbon isotope may also be linked to changes in metabolic 
processes, ontogenetic shifts in diet, and ontogenetically 
controlled biofractionation (Bettencourt and Guerra 1999; 
Rexfort and Mutterlose 2006; Neves et  al. 2009). While 
differences in isotopic signatures at the base of the food 
web may be reflected at higher trophic levels, the direct 
effect of a shift in producers (either due to habitat shifts 
or ontogenetic shifts in diet) is likely to be minimal, given 
that the majority of carbon in aragonitic structures would 
be expected to come from seawater (Campana 1999; 
Rooker et al. 2010).

Findings from this study suggest that δ13C and δ18O in 
cuttlebones represent promising natural tags for tracking 
cross-shelf movements of cuttlefish between nearshore and 
offshore water masses. Similar to other biogenic hard parts, 
the microstructure of the cuttlebone provides relative age/
time information that can be combined with δ13C and δ18O 
data to develop chronologies of spatial occurrences by cut-
tlefish. Given the ecological value of cuttlefish throughout 
the Mediterranean region, cuttlebone chemistry is poten-
tially a useful tool to improve our understanding of migra-
tion patterns and connectivity among juvenile and adult 
habitats.
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